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MATRICES

U MATRIX

A matrix is an ordered rectangular array of numbers or
functions. The numbers or functions are called the
elements of the matrix

simply mxn matrix.

orA:[qij] I<ism,1<j<n,ijeN

mxn’

in mxn matrix will be mn.

W ORDER OF A MATRIX

A matrix having m rows and n columns is called a matrix of order mxn or

a, is an element lying in the i row & j'" column. The number of elements

WY T1YPE OF MATRIX

(i) Column Matrix: A matrix is said to be a column matrix if it has only one column, i.e,, A=[c1.u]mx|

(ii) Row Matrix: Row matrix has only one row, i.e., B=[bU]Wxn is a row matrix of order 1xn.

(iiif) square Matrix: Square matrix has equal number of rows and columns, i.e, A=[a.]

i mxm
diagonal matrix if bii=0, where i = j.
(v) scalar Matrix: It is a diagonal matrix with all its diagonal elements are equal, i.e,, B=[bij | -
I = j & k= constant.

(vi) Identity Matrix: : It is a diagonal matrix having all its diagonal elements equal to 1, i.e,, A=[ctii |-
- 1, ifi=j

70, ifi=#j
we denote identity matrix by | when order is n.

(vii) Zero Matrix: A matrix is said to be zero or null matrix if all its elements are zero. It is denoted by O.

is a column matrix of order mx1.

is a square matrix of order m.

(iv) Diagonal Matrix: A square matrix is said to be diagonal matrix if all of its non-diagonal elements are zero, i.e, B=[b
is a scalar matrix if bu. =0, where i=j, bu=k, when

is an identity matrix if

is said to be a

ij]an

/

@YV EQUALITY OF MATRICES

Two matrices A=[q.‘1] and B = [bii] are said to be equal if
(i) they are of the same order

WY A0DITION OF MATRICES |

@) tr A) = atr(A)
(iii) tr(aB) = tr(BA)

® (vi) tr(aB) = tr A.trB (v) tr(0) = 0

L
-TRACE OF A MATRIX

The sum of diagonal element of a square matrix A is
called the trace of matrix A, which is denoted by tr A

(ii) each element of A is equal to the corresponding element of B, i.e, a; = bij foralli&j tr A= za,i =antap+t...a P
i=1
@ Properties of Trace of a Matrix
Let A = [(:1‘,]]nxn and B = [bii] and A be a scalar.

(ii) tr(a - B)=tr(a) - tr(B)
() tr()=n

J

Properties of matrix Addition

(i) commulative Law: A+ B=B + A (ii) Associative Law: (A+B)+C=A+(B+C)

(iiii) Existence of Additive Identity: Let A=[a, 1,,.,& O = zero maitrix of order m x n,

then A + O = O + A = A Here O is the additive identity for matrix addition.

(iv) Existence of Additive Inverse: Let A= [o|ij]mxn be any matrix then we have another
matrix as Let -A= [-q;] ., such that A + (-A) = (- A) + A = O. Here -A is the additive
inverse of A or negative of A.

° / °

Properties

(M) k(A +B)=kA+kB

@
-MULTIPLICATION OF A

MATRIX BY A SCALAR

Let A:[aij]mxn be a matrix & k, t be a number.
Then, kA = Ak = [ka.]

ijdmxn

(i) (k+t) A=KA +tA.

- MULTIPLICATION OF MATRICES

If A & B are any two matrices, then their product will be defined only when the number of columns in A is equal to the number of rows in B

if A :[aij] and B :[b‘i] then their product AB=C :[C.j} is a matrix of order, m x p where
xn nxp
(i)™ element of AB= Cy =21 a;by
®
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polynomial and let A be a square matrix of order n,
then f(A) = gp A™ + o, A" "1+ 0, Am "2+ . +q A+
a, | is called a matrix polynomial.

Properties of Invertible Matrices
(i) Uniqueness of Inverse : Inverse of a square maitrix, if it exists, is

INVERTIBLE MATRIX AND
INVERSE MATRIX

] @
PROPERTIES OF MATRIX - PROPERTIES OF TRANSPOSE OF
MULTIPLICATON THE MATRICES
For any matrices A & B of suitable orders, we have:
() Associative Law for Multiplication: If A, B & C are three matrices of order ® N v
mxn,nxp&pxq respectively, then (AB)C = A(BC) (i) (a7)=A
N - . )
(iii) Distributive Law : For three matrices A, B & C(a) A(B+C)=AB+AC (”) (kn) kT(A)T(WhTere kis constant)
(b) (A +B)C=AC +BC whenever both sides of equality are defined. (i) (A= B)T= A2 B
(iv) (AB)T =BT AT
(lll) Matrix Multiplication is not commutative in general, i.eAB = BA (m genercl). ) (A Ay As ... An—1 An)T: AnTAn-1T A3TA2TA1T
(iv) Existence of Multiplicative Identity: For every square matrix, there exists an Vi) IT=1.
identity matrix | of same order such thatlA = AT= A ®
Ps J
® @
-MAme POLYNOMIAL -SYMMETRIC & SKEW SYMMETIC MATRICES
Symmetric Matrix
Let f(x) S XM+ o X" T+ o, X" "2+ a0 _ x+a bea A square matrix A:[a;j] is called a symmetric matrix, ifaij =a; for alli, j or AT=A @

Skew Symmetric Matrix
A square matrix A :[ai.i:l is called a skew-symmetric matrix, if a;

—a;foralli,jor AT =-A
Properties of Symmetric & Skew Symmetric Matrices

(i) For any square matrix A with real number entries(A 4 AT) is a skew symmetric matrix
(A - AT) symmetric matrix.

(i) Any square matrix A can be expressed as the sum of a symmetric & a skew symmetric

matrix as A:{%(AJrAT)}{%(AfAT)}

unique. ® J
() (a)7=a (ii) (A7 = (A7) i) (AB)"= B A" (iv) (A= (A7) °
[
- ORTHOGONAL MATRIX
® A square matrix A is called orthogonal if AAT == AT A, ie, if A= AT
- IDEMPOTENT MATRIX £ . _[cosa —sina]_ | ) .
xample: A = . = A'. In fact every unit matrix is orthogonal
—smao cosa
A square matrix A is called an idempotent matrix if A2 = A, ®
1/2 1/2]. . :
Example: is an idempotent matrix, because PY
1/2 1/2
e INVOLUTORY MATRIX
AV Y3
A2 = ) L1lE ? ? =A A square matrix A is called an involutory matrix if A2 = 1or A7 = A
- —4= - - 10
4 4 4 2 2 Example: A {O J is an involutory matrix because
Also A = 0 and, B = 0 0are idempotent matrices because 1
! 0 ! 0 1|A2=AandB?=B. } A= [0 1} =1 In fact every unit matrix is involutory
([
[ 4
L J o
A matrix A will be called a periodic matrix if A1 = A where k A square matrix A is called a nilpotent matrix if there exists p € N such that AP = 0.
is a positive integer. If, however k is the least positive integer 0 0 0 0
. . X i Example: A = is a nilpotent matrix because A? = =0 (Here p= 2)
for which Ak*' = A, then k is said to be the period of A. 1 0 0 0
\d ®
L ]

()
" {hm (x)

- DIFFERENTIATION OF A MATRIX

?(x)}, then

de = fl(x) g'(x) is a differentiation of matrix A.
[ n(x) T(x)
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