MATRICES

O1. MATRIX

A matrix is an ordered rectangular array of numbers or functions. The numbers or functions are called the elements of the matrix

02. ORDER OF A MATRIX

A matrix having m rows and n columns is called a matrix of order m×n or simply m×n matrix.

or $A = [a_{ij}]_{m \times n}$, $1 \le i \le m$, $1 \le j \le n$, $i, j \in \mathbb{N}$

 α_{ij} is an element lying in the ith row & jth column. The number of elements in man matrix will be mn.

03. TYPE OF MATRIX

- (i) Column Matrix: A matrix is said to be a column matrix if it has only one column, i.e., A=[a_{ii}]_{mx1} is a column matrix of order m×1.
- (ii) Row Matrix: Row matrix has only one row, i.e., $B=[b_{ij}]_{j_{NN}}$ is a row matrix of order 1×n.
- (iii) Square Matrix: Square matrix has equal number of rows and columns, i.e., $A = [a_{ij}]_{m \times m}$ is a square matrix of order m.
- (iv) Diagonal Matrix: A square matrix is said to be diagonal matrix if all of its non-diagonal elements are zero, i.e., B=[b_{ij}]_{m×n} is said to be a diagonal matrix if b_{ij}=0, where i ≠ j.
- (v) Scalar Matrix: It is a diagonal matrix with all its diagonal elements are equal, i.e., B=[b_{ij}]_{m×n} is a scalar matrix if b_{ij} = 0, where i≠j, b_{ij}=k, when I = j & k= constant.
- (vi) Identity Matrix: : It is a diagonal matrix having all its diagonal elements equal to 1, i.e., $A = \left[a_{ij}\right]_{m \times n}$ is an identity matrix if $a_{ij} = \begin{cases} 1, & \text{if } i = j \\ 0, & \text{if } i \neq j \end{cases}$

we denote identity matrix by I_n when order is n.

(vii) Zero Matrix: A matrix is said to be zero or null matrix if all its elements are zero. It is denoted by O.

04. EQUALITY OF MATRICES

Two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ are said to be equal if

- (i) they are of the same order
- (ii) each element of A is equal to the corresponding element of B, i.e., $a_{ij} = b_{ij}$ for all i & j

06. ADDITION OF MATRICES

Properties of matrix Addition

- (i) Commulative Law: A + B = B + A (ii) Associative Law: (A + B) + C = A + (B + C)
- (iii) Existence of Additive Identity: Let $A = [a_{ij}]_{m \times n} \& O = zero$ matrix of order $m \times n$, then A + O = O + A = A. Here O is the additive identity for matrix addition.
- (iv) Existence of Additive Inverse: Let $A = [a_{ij}]_{m \times n}$ be any matrix then we have another matrix as Let $-A = [-a_{ij}]_{m \times n}$ such that A + (-A) = (-A) + A = O. Here -A is the additive inverse of A or negative of A.

05. TRACE OF A MATRIX

The sum of diagonal element of a square matrix A is called the trace of matrix A, which is denoted by tr A

tr A=
$$\sum_{i=1}^{n} a_{ii} = a_{11} + a_{22} + \dots a_{nn}$$

Properties of Trace of a Matrix

Let $A = \left[\alpha_{ij}\right]_{n \times n}$ and $B = \left[b_{ij}\right]$ and λ be a scalar.

(i)
$$tr(\lambda A) = \lambda tr(A)$$
 (ii) $tr(A - B) = tr(A) - tr(B)$

(iii)
$$tr(AB) = tr(BA)$$
 (iv) $tr(I_n) = n$

(vi)
$$tr(AB) \neq tr A. tr B (v) tr(O) = 0$$

MULTIPLICATION OF A MATRIX BY A SCALAR

Let $A=[\alpha_{ij}]m\times n$ be a matrix & k, t be a number. Then, $kA=Ak=\left[k\alpha_{ii}\right]_{m\times n}$

Properties

(I)
$$k (A + B) = kA + kB$$

(ii)
$$(k + t) A = kA + tA$$
.

08. MULTIPLICATION OF MATRICES

If A & B are any two matrices, then their product will be defined only when the number of columns in A is equal to the number of rows in B If $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$ and $B = \begin{bmatrix} b_{ij} \end{bmatrix}_{n \times p}$ then their product $AB = C = \begin{bmatrix} c_{ij} \end{bmatrix}$ is a matrix of order, m x p where

 $(ij)^{th}$ element of $AB = C_{ij} = \sum_{r=1}^{n} a_{ir} b_{ri}$

09.

PROPERTIES OF MATRIX MULTIPLICATION

- (I) Associative Law for Multiplication: If A, B & C are three matrices of order $m \times n, n \times p \& p \times q$ respectively, then (AB)C = A(BC)
- (ii) Distributive Law: For three matrices A, B & C(a) A(B+C) = AB + AC(b) (A+B)C = AC + BC whenever both sides of equality are defined.
- (iii) Matrix Multiplication is not commutative in general, i.eAB \neq BA (in general).
- (iv) Existence of Multiplicative Identity: For every square matrix, there exists an identity matrix I of same order such that IA = AI = A

10.

PROPERTIES OF TRANSPOSE OF THE MATRICES

For any matrices A & B of suitable orders, we have:

- $(i) (A^T)^T = A$
- (ii) (kA)^T =k (A)^T (where k is constant)
- (iii) $(A \pm B)^T = A^T \pm B^T$
- (iv) $(AB)^T = B^T A^T$
- (v) $(A_1 A_2 A_3 ... A_{n-1} A_n)^T = A_n^T A_{n-1}^T ... A_3^T A_2^T A_1^T$
- (vi) $I^T = I$.

11,

MATRIX POLYNOMIAL

Let $f(x) = a_0 x^m + a_1 x^{m-1} + a_2 x^{m-2} + ... a_{n-1} x + a_n$ be a polynomial and let A be a square matrix of order n, then $f(A) = a_0 A^m + a_1 A^{m-1} + a_2 A^{m-2} + ... + a_{n-1} A + a_n I_n$ is called a matrix polynomial.

13.

INVERTIBLE MATRIX AND INVERSE MATRIX

Properties of Invertible Matrices

- (i) Uniqueness of Inverse : Inverse of a square matrix, if it exists, is unique.
- $(i) \ (A^{-1})^{-1} = A \ (ii) \ (A^{T})^{-1} = (A^{-1})^{T} \ (iii) \ (AB)^{-1} = B^{-1}A^{-1} \ (iv) \ (A^{k})^{-1} = (A^{-1})^{k}$

15.

IDEMPOTENT MATRIX

A square matrix A is called an idempotent matrix if $A^2 = A$. Example: $\begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$ is an idempotent matrix, because

$$A^{2} = \begin{bmatrix} \frac{1}{4} + \frac{1}{4} & \frac{1}{4} + \frac{1}{4} \\ \frac{1}{4} + \frac{1}{4} & \frac{1}{4} + \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = A$$

Also, A = $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and, B = $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ are idempotent matrices because A² = A and B² = B.

12.

SYMMETRIC & SKEW SYMMETIC MATRICES

Symmetric Matrix

A square matrix $\mathbf{A} = \begin{bmatrix} a_{ii} \end{bmatrix}$ is called a symmetric matrix, if $a_{ij} = a_{ji}$ for all i,j or $\mathbf{A}^T = \mathbf{A}$

Skew Symmetric Matrix

A square matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ is called a skew-symmetric matrix, if $a_{ij} = -a_{ji}$ for all i, j or $A^T = -A$

Properties of Symmetric & Skew Symmetric Matrices

- (i) For any square matrix A with real number entries $\left(A+A^T\right)$ is a skew symmetric matrix $\left(A-A^T\right)$ symmetric matrix.
- (ii) Any square matrix A can be expressed as the sum of a symmetric & a skew symmetric matrix as $A = \left[\frac{1}{2}\left(A + A^{T}\right)\right] + \left[\frac{1}{2}\left(A A^{T}\right)\right]$

14.

ORTHOGONAL MATRIX

A square matrix A is called orthogonal if $AA^T = I = A^T A$, i.e., if $A^{-1} = A^T$.

Example: $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} = A^{T}$. In fact every unit matrix is orthogonal

16.

INVOLUTORY MATRIX

A square matrix A is called an involutory matrix if $A^2 = I$ or $A^{-1} = A$ Example: $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is an involutory matrix because

 $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I \quad \text{In fact every unit matrix is involutory}$

17.

PERIODIC MATRIX

A matrix A will be called a periodic matrix if $A^{k+1} = A$ where k is a positive integer. If, however k is the least positive integer for which $A^{k+1} = A$, then k is said to be the period of A.

18.

NILPOTENT MATRIX

A square matrix A is called a nilpotent matrix if there exists $p \in N$ such that $A^p = 0$.

Example: $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ is a nilpotent matrix because $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$ (Here p = 2)

19.

DIFFERENTIATION OF A MATRIX

If A = $\begin{bmatrix} f(x) & g(x) \\ h(x) & l(x) \end{bmatrix}$, then $\frac{dA}{dx} = \begin{bmatrix} f'(x) & g'(x) \\ h'(x) & l'(x) \end{bmatrix}$ is a differentiation of matrix A.

